
Spell Slinger
Project Report

Student: David Darigan
Student ID: C00263218
Supervisor: Dr Joseph Kehoe
Submission: 19/04/2024

1

Table of Contents

1. Introduction 3
2. Project Description 4
3. Technical Description 5

3.1 Jetpack Compose 5
3.2 Firebase 5
3.3 Google Maps 5
3.4 Bluetooth 5
3.5 SceneView 5

4. Final Screens 6
5. Database Structure 21
6. Test Cases 28

6.1 On Auth/Delete Trigger Test Case 29
6.2 Draw Spells Test Cases 30
6.3 Challenge Player Test Cases 31
6.4 PVP Test Cases 32
6.5 Spell Tests Cases 33
6.6 Status Test Cases 34

7. Challenges 35
8. Learning Outcomes 37
9. Project Review 39
10. Conclusion 40
11. Acknowledgments 41
12. Declaration of Plagiarism 42

2

Table of Figures

Fig 1 - Splash Screen.. 7
Fig 2 - Firebase Auth UI...8
Fig 3 - World Map Screen..9
Fig 4 - SpellWell Screen.. 10
Fig 5 - Draw Results Dialog... 11
Fig 6 - SpellBook... 12
Fig 7 - Battle Creature... 13
Fig 8 - Enemy Proximity Warning.. 14
Fig 9 - AR Enemy.. 15
Fig 10 - PVP Lobby..16
Fig 11 - Battle Player... 17
Fig 12 - Leaderboard... 18
Fig 13 - Settings Screen.. 19
Fig 14 - Delete Account Confirmation Dialog...20
Fig 15 - Creature Database Structure..22
Fig 16 - Locations Database Structure.. 23
Fig 17 - Distance database structure...24
Fig 18 - Leaderboard database structure.. 24
Fig 19 - read_spellwells database structure.. 25
Fig 20 - skill_points database structure... 25
Fig 21 - Spellbelts database structure... 26
Fig 22 - Spellbooks database structure... 27
Fig 23 - Spells database structure...27

3

1. Introduction
The purpose of this report is to provide a detailed overview of the completed student project to
the reader.

This document contains a description of the “SpellSlinger” augmented reality android mobile
game.The reader will be briefed on the technical technologies used throughout, the final
screens of the project will be displayed, the test cases used to test the backend server logic will
be presented to the reader. The challenges and learning outcomes will also be explained in
detail.

4

2. Project Description
Spell Slinger is a multiplayer android game that utilises augmented reality for an enhanced
player experience. Players travel the real world while gaining ‘Skill Points’ for every new
distance walked. Players may spend these skill points to draw spells from Spell Wells, which are
located at real world landmarks. Players may use these spells in battle against creatures or
against other players in their surrounding vicinity. All of these use cases have been met.

5

3. Technical Description

3.1 Jetpack Compose

Spell Slinger was developed using Jetpack Compose which is a relatively new reactive
functional player interface framework for Android applications which uses Kotlin. This framework
was chosen because it aligned player interface code and logical code into a single shared code
space.

3.2 Firebase

Google’s Firebase Realtime Database was the database utilised by this project. It provided
authentication which proved useful in securing data. Google’s Cloud Functions also integrate
with Firebase through Firebase Functions which integrated with this project significantly.

3.3 Google Maps

The project used Google Maps Platform as the basis for the World Map screen. This allowed the
project to create a styled map based on real world locations.

3.4 Bluetooth

Bluetooth enabled location-based multiplayer without breaching GDPR by pairing with only
devices locally within the area before starting a player versus player battle on the server.

3.5 SceneView

SceneView is a Jetpack Compose wrapper over Google’s ARCore library. It provides Spell
Slinger with augmented reality features.

6

4. Final Screens

7

The Application starts at the Splash Screen
which is a LoginActivity.xml file and allows
players to login or sign up by invoking the
Firebase Authentication UI

Fig 1 - Splash Screen

8

This is the premade FirebaseAuthenticationUI
package that is involved from the splash screen.
players have the choices to sign up or sign in
with their email and password OR their google
account. If successful, the LoginActivity will finish
and will start the Applications MainActivity.

Fig 2 - Firebase Auth UI

9

The World Map screen is the first composable
the player will encounter upon logging in. A
composable is a function that provides Kotlin
code to define the player interface of a Jetpack
Compose application and manage interactions
between itself and the screen state.

The World Map contains a sprite representing
the player located at their approximate location
in the real world.

Creatures and Spell Wells are also populated at
locations in the real world. The World Map
observes the players location in order to get all
creatures in the players geohash and
surrounding geohash neighbours

This is also the introduction to the scaffold that
hosts the top app bar, which includes an action
to logout of the Application, the bottom app bar
that contains all primary navigation options.

In the centre is the ‘content’ that displays the
content of the current screen.

The player’s skill points, which are earned by
walking real world distance, are displayed in the
top right corner.

Fig 3 - World Map Screen

10

The Spell Well Screen details the title of the
Spell Well being interacted with, and has an
image that displays a picture from the location.

Underneath the image there is a row of spells
available at the Spell Well with the chance of
drawing them from this spell well.

There are two options to draw from the Spell
Well which will invoke a write command to the
database and an option to return to the world
map which will navigate the player back to the
world map.

Fig 4 - SpellWell Screen

11

When a player draws from a spell well, their skill
points will be reduced and they will draw six
spells from the well, which are then displayed to
the player on the client. The player can dismiss
this dialog by pressing the ‘okay’ button.

Fig 5 - Draw Results Dialog

12

The SpellBook displays all of the Spells the
player has and which Spells are equipped to
their spellbelt.

A player can see the details of the last pressed
spell at the top of the page. When a player clicks
on a spell not in their spellbelt and then clicks on
a slot in their spellbelt, that spell will be equipped
to the spellbelt. If there was already a spell in
that slot, then that spell will be unequipped for
the newly equipped spell.

Fig 6 - SpellBook

13

When a player clicks on a creature on the World
Map, a pve (player-versus-environment) battle
starts against that creature.

The creature and player will take rounds slinging
spells at each other until one loses. When either
loses, the battle is over. If the player lost OR
won, they will be returned to the world map with
full health.

Anytime a spell is cast by the player in a battle,
that spell is reduced by a single count in that
player’s Spellbook

Fig 7 - Battle Creature

14

The dialog that pops up when the augmented
reality enemy has appeared in the real world

Fig 8 - Enemy Proximity Warning

15

The enemy augmented reality model that has
appeared in the player’s room.

Fig 9 - AR Enemy

16

The PVP Lobby is a column that allows players
to expose the app via bluetooth in order to
facilitate location-based multiplayer. A player
may scan for hosting apps as a client or
vice-versa.

Once paired, the two devices communicate via a
bluetooth socket connection to create a room id
from the composite of their player ids. This room
is then sent to the database to trigger a
player-versus-player battle which the device will
listen to from the battle screen which it has just
navigated from.

Fig 10 - PVP Lobby

17

A Player versus Player battle largely plays the
same as a Player versus creature battle.
However the server waits for both spells to be
cast before either execute, afterwards it deletes
them both.The spellcast function against a player
only triggers on write, and since the command
still exists until that turn is executed, this
prevents updates (attempted multiple spells
being cast) from triggering the function again.

Fig 11 - Battle Player

18

The leaderboard is a simple screen that retrieves
the current rankings from the database and
orders them by win count in descending order.

Fig 12 - Leaderboard

19

The settings screen with the single available
option to delete the player's account that invokes
a confirmation dialog before the player confirms
or decides against the deletion of their account.

Fig 13 - Settings Screen

20

The confirmation dialog for deleting a player's
account. If confirm is pressed, then firebase
deletes the player from their authentication
servers and the application sends the player to
the logout screen. Otherwise, if cancel is clicked
or the dialog is dismissed, then nothing happens.

Fig 14 - Delete Account Confirmation Dialog

21

5. Database Structure

22

5.1 Creatures

Fig 15 - Creature Database Structure

23

5.2 Locations

Fig 16 - Locations Database Structure

24

5.3 Distance

Fig 17 - Distance database structure

5.4 Leaderboard

Fig 18 - Leaderboard database structure

25

5.5 read_spellwells

Fig 19 - read_spellwells database structure

5.6 Skill_points

Fig 20 - skill_points database structure

26

5.7 Spellbelts

Fig 21 - Spellbelts database structure

27

5.8 Spellbooks

Fig 22 - Spellbooks database structure

5.9 Spells

Fig 23 - Spells database structure

28

6. Test Cases

29

6.1 On Auth/Delete Trigger Test Case

Name Result

Spellbook is created on account creation Passing

Spellbelt is created on account creation Passing

Spell in Spellbelt contains is of equal count to SpellBook counterpart Passing

Spellbook is deleted on account deletion Passing

Spellbelt is deleted on account deletion Passing

30

6.2 Draw Spells Test Cases

Name Result

Player skill points are reduced on draw Passing

Player spell count is increased on draw Passing

Draw History is recorded on draw Passing

31

6.3 Challenge Player Test Cases

Name Result

A PVP battle can be looked up by either participating player’s id Passing

A battle is created when a player is challenged Passing

Both player’s exist in the battle object Passing

A PVP battle starts with turn 0 created Passing

Battle commands are deleted after the challenge is resolved Passing

32

6.4 PVP Test Cases

Name Result

Spell count is reduced when it is cast Passing

An attack spell is applied against a status spell Passing

A defence spell is applied against an attack spell Passing

A status spell is applied against a defence spell Passing

Defending player flinches when they use a status spell against an enemy’s attack Passing

Attacker is countered when their enemy uses a counter against their attack spell Passing

Player dodges when using a status spell against a defence spell Passing

The battle is over when a player’s health reaches 0 Passing

An attack against an attack results in a tie Passing

A defense spell against a defense spell results in a tie Passing

A status spell against a status spell results in a tie Passing

Win and Lose are recorded when the battle is over Passing

33

6.5 Spell Tests Cases

Name Result

Fireball deals 20 damage Passing

Earthquake deals 20 damage Passing

Razorwind deals 20 damage Passing

Thunderbolt deals 20 damage Passing

Cure restores 20 health Passing

Cure cannot restore above max health (100) Passing

Protect prevents damage Passing

Counter deals twice as much damage as the attack spell it counters Passing

Absorb restores health equal to damage that would have been taken Passing

Absorb cannot restore more than max health (100) Passing

Slime inflicts toxic status Passing

Toxic inflicts toxic status Passing

Regenerate applies regenerate status Passing

34

6.6 Status Test Cases

Name Result

Toxic deals 20 damage Passing

Regenerate heals 20 health Passing

Regenerate cannot heal past max health (100) Passing

Status effects vanish when they have no remaining turns left Passing

35

7. Challenges

7.1 GDPR

SpellSlinger uses, or intended to use, the player’s location for a number of game mechanics
such as granting the player skill points as a game currency for travelling distance in real life,
making sure that the player doesn’t draw from the same spell well more than once within a set
duration, or making sure the the two player’s battling are within the vicinity of each other. Each
of these presented their own challenge.

Locations are collected client-side which means that players may be able to mock their location.
Within that in mind, the server added a ‘reasonability’ check to make sure that players are
travelling no more than five kilometres per hour, and if they are, to reduce their distance to that
maximum. This may punish the more athletic players for exercising too intensely but for the
sake of the average player it demonstrates its value.

SpellWells were initially intended to be time-based events where a player travels to a well in
order to draw spells. The player who drew the spells would be prevented from drawing the
spells for a set amount of time. However this was recorded by associating a player id with a
timestamp against an entity that had a location. It is not a direct violation of GDPR, it may not be
a violation at all, but it is associating a player’s id with a location through a proxy entity, so to err
on the side of caution this mechanic was discarded. SpellWells now use skill points as currency
to draw spells.

The non-existent arena object was to be used to help identify the location of two players within
the same area. This suffers from a similar issue of the Spell Well where I am associating a
player id with a location through a proxy on the server. The solution to this was to introduce
bluetooth as a matchmaking system because it pairs devices locally and is also significantly
harder to fake than a location. The bluetooth devices pair to each other, once paired the host
creates a bluetooth server socket for the client to join two, at this point they create a room id out
of their two ids.

36

7.2 Augmented Reality

SpellSlinger uses Augmented Reality for player versus creature battles. Google has ARCore but
it is a very bare API to the AR components of an application. There are additional libraries such
as SceneForm from Google but it is no longer maintained, there is also SceneForm-Maintained
which was the previously maintained version of Scene Form but it too is also no longer
maintained. SceneView, a Jetpack Compose version of SceneForm, is what was eventually
settled on.

SceneView presented some issues itself. SceneView handles the required camera permission
automatically for applications that depend on it. This conflicted with something in my own
personal “Samsung Galaxy A23” device which did not allow that because according to the
Samsung Device the camera was required by a different application. This issue turned out to be
an upstream problem with Samsung specifically, so I conceded and bought a Google Pixel 7a
as a dedicated development device. In later versions of SceneView, this problem no longer
exists however AR from SceneView still cannot run on Samsung Devices

7.3 Rules Enforcement

The initial plan for rules enforcement of the game mechanics was to use the “Firebase
Database Rules” json document. This was a json document that mirrored the path of the
Firebase Realtime Database, however it could compare information such as if the author of the
database write had the same id as the player object it was writing too OR validation to check if
the data that was sent is valid to write there.

Firebase Rules was not fit for this purpose past a certain point. Being a JSON document meant
that comments were not allowed, which is unsuitable for what is essentially an expression
language. The nested structure was also unpleasant to read. Where necessary these rules were
replaced by rules inside the python function triggered by a database write to a command
operation. In future, as well, the document would be structured in such a way so that it would be
a list of different player owned domain models under a player id rather than a list of player ids
under each domain model. This can help reduces the necessity of the “.read” and “.write” rules
as it could be done on a player by player basis and delegating to the domain models rather than
using it on a model by model basis and delegating it to the player

37

8. Learning Outcomes

1. Kotlin & Jetpack Compose Design Patterns

Kotlin Flows: Kotlin views data as a stream of changes rather than changes performed to one
object. This is included in the design of Kotlin Flows which are relatively simple unbounded
producer-consumer buffers that are typically thread safe within the context of Kotlin Code.

Kotlin Coroutines: Kotlin utilises Coroutines in order to ‘collect’ data from a Kotlin Flow on
different threads (namely Main, IO & Undefined which may be any) and update other flows with
that data. This is used in the project extensively in the World Map. The player location is one
flow, when it changes it launches another flow that gets the players geohash, this in turn gets all
eight neighbours of that geohash, then we use the combine function to combine all of these
flows into a single observable flow that outputs a collection which is the entirety of spell wells
and roaming creatures in the players current area.

Higher-Order Composables: Jetpack Composes creates UI by using a nested set of functions,
for example a Row that represents a SpellBelt with Spell Composables as its children UI. To
pass a callback event from the screen when a Spell is pressed, that event has to be first passed
down to the spellbelt and then again into the Spell itself, which passes the event down to its
child clickable, usually a button. If a dependency were to be added to the spell, it would need to
travel the same several layers down. This leads to fragile code which can be hard to refactor.
Jetpack Compose solves this problem through the use of composition, where the Spell
composables are built at the same level of the SpellBelt, and those composables with the
previously drilled state are now passed down instead of the state.

Stateful & Stateless Composables: With Composition in mind, Jetpack Compose emphasises
the separation of stateful and stateless composables. The top-level composable should be a
‘Screen’ composable that is responsible for managing communication with the outside world
through it’s related view model, and it passes that state down to a UI Composable which is the
parent container of all the other UI Composables. In this case, the state should never pass more
than two layers (one from the screen to the UI, and another from the UI to a child widget
higher-order composable)

Sealed Events: A Sealed Event is a sealed interface that contains a list of classes or objects
that implement its interface. It is reminiscent of enumerated classes but with more flexibility.
Developers are encouraged to dispatch these events in a single onEvent callback that
consumes a sealed event of that screen’s type and then applies an action based on it inside the
UIs related View Model. This is in contrast to exposing each event as a callback directly to the
composable which would explode the amount of parameters that exist in the argument list.

38

2. Firebase Write-Trigger-Observe Design Pattern

I've been getting a better understanding of the firebase realtime database and I think the
traditional methods of create-read-update-delete are not exactly what we want with the
realtime database. Instead, everything that is interested in state listens through a
'callBackFlow' (a consumer-producer that consumers change from the network and
produces events which are passed to a callback) and updates as it changes. Any
create/delete operations required will be handled server-side. The app writes a
command to the database, which triggers a function, if all firebase rule checks have
passed, then that function updates a non-command value that the app is currently
observing.

3. Google Maps

The ability to interact and place various interactable items in real world locations on the
google map.

4. SceneView

The ability to place an AR Model relative to the player’s location in the world

5. Bluetooth

To utilise BroadCastReceivers in order to scan for, pair with and connect to other
bluetooth devices. The ability to run host and connect to a bluetooth socket server in
which devices can communicate with each other via text strings.

39

9. Project Review
The aim of this project was to create an augmented reality geolocation mobile game. That aim
was achieved. The majority of use cases that were set out were also successful, the use cases
which did not meet development was due to a change in design philosophy or were altered in
some way to fit the technical limitations of the application.

The use case to use skill points as currency to improve the attributes of the player was dropped.
This mechanic complicates battle functions, leading to imbalance (what happens when a player
who has invested several times more than another, battles that player?). It was dropped in
favour of using skill points as currency at spell wells.

The original ‘draw’ use case was complicated by possible GDPR violations through the use of
associating a player id with a location. This was discarded in favour of using skill points instead.
This also leads to a tighter gameplay loop of travel -> draw -> battle -> travel.

The original multiplayer battle use case had to be modified to use bluetooth to determine
player’s locality to each other, in order to avoid possible GDPR complications, and also
strengthen.

The weight of how far firebase rules could sustain the complex logic of a battle was
overzealous. The use of cloud functions allow for the rules to be extended into more complex
expressions if required.

All in all, I would consider this project overall a success.

If I were to begin again, I would take the following changes:

● Start coding immediately
● Use an architecture pattern, such as “clean architecture” from the start, it may be

unnecessary at first but it will repay
● Organise the database to have player related items to be listed under a player id, rather

than have players listed under each player related item. This should also improve the
rules structure by taking advantage of cascading rules (ie a player can read everything
underneath their id)

● Implement Dependency Injection immediately.

40

10. Conclusion
In conclusion, the Spell Slinger game presents a fresh take on geolocation mobile gaming by
directly incorporating the draw spell use case with the consumption of battle in spells. The
addition of bluetooth in order to encourage matchmaking is an innovative technique in
sidestepping concerns about GDPR while taking advantage of local devices.

41

11. Acknowledgments
Thanks to my supervisor Dr. Joseph Kehoe for allowing this project to exist and all the
supervision that he has given me throughout the year.

Thanks to the youtuber, Phillip Lacker, who helped me through some of the more difficult parts
of this project, especially the bluetooth connections.

42

12. Declaration of Plagiarism

43

